Archive for December, 2009

Quattro Formaggio

December 20th, 2009 Comments off

For 37 years, I lived in the south.  (And technically I still do, though most would call my current locale the Mid-Atlantic.)  And in the south, we only get snow once – maybe twice – a year.  And when we do, it’s typically an inch or two (and the governor still usually declares a state of emergency).  Despite this, all three vehicles in my household’s garage have all-wheel- (or 4-wheel-) drive.  I’ve insisted on it.

Now, many folks believe all-wheel-drive is only useful in snow or mud (or otherwise slippery conditions).  I recall about 8 years ago, when I test-drove a VW Passat, I asked the salesman about 4Motion – Volkswagen’s all-wheel-drive system.  His reply was, “You can’t get that down here!  Those are only for up north!”  (…We then went to the Audi dealer and bought an A4 Avant – with Quattro all-wheel-drive – instead.)  And sure, the biggest advantage for a vehicle in which all 4 wheels are driven comes when the weather gets treacherous.  …I’m thinking about this now, because I recently had the opportunity to drive through the middle of The Blizzard Of ’09.  It took 6 hours to go what is normally a 2-hour drive.  Toward the end, I saw rear-wheel-drive cars pirouette across icy bridges, front-wheel-drive cars struggle to exit nearly level parking lots, and even an overturned tractor-trailer.  Overall, I probably witnessed over 50 vehicles nosed into a guardrail, stuck on the shoulder, or otherwise scarred and motionless.  (Quiz:  What do you think the car was that stood out to me out as being the most unusable in the snow?  Answer at the end of the post.)  The A4 soldiered on, as if the event were simply a light rain.

Audi Ski JumpOf course, an AWD vehicle isn’t the only way to handle snowy roads.  A capable driver with a front-wheel- or even a rear-wheel-drive car (especially with a limited-slip differential) and proper tires can maneuver quite well.  (An even smarter driver may decide to stay inside and enjoy some hot buttered rum!)  But physics dictates that the more contact-patches moving the car along, the more likely it is to move at all.  (Stopping is a different matter.  All cars have 4-wheel-brakes.  Unfortunately, it’s the loose nut behind the steering wheel that is often the weak link!)  The fact that I saw a few 18-wheelers (with two driven axles, totaling 8 wheels) spin their tires and go nowhere on the slightest incline testifies to the road conditions 2 nights ago.

But what about the 99% of the time when you don’t need all-wheel-drive?  I mean, doesn’t it just add weight and inefficiency?  Well – yes, it does.  But, it’s still worth it.  Drive a front-wheel-drive car near the limit – try to accelerate while turning.  The front-end will just plow (that is, understeer, or in NASCAR-speak:  push) to the outside of the turn.  A rear-wheel-drive car is much more sporting in that regard, but apply too much power and the opposite effect occurs:  oversteer, when the rear-end breaks loose.  But an all-wheel-drive car can make even the worst driver look talented.

And what about that other 1% of the time when the weather dictates that an all-wheel-drive system might be beneficial? Absolutely worth the price paid (which is usually no more than a DVD or a navigation system).

QUIZ ANSWER:  I saw several of the latest generation Dodge Magnum wagons during my drive.  I think every one of them was stuck.  If you live north of the US/Mexico border, you probably shouldn’t buy one.

Electric Eye Candy

December 16th, 2009 Comments off

A decade ago, Toyota showed us that transportation could be efficient but boring when they introduced the first generation Prius.  A few years ago, Tesla wowed the world (well, at least the automotive world – or rather, the green-sports-car-world) with its Roadster, showing that fast can be efficient and sexy all at once.  Then came Fisker‘s Karma.  And others…

Mercedes Benz SLS AMG

Mercedes Benz SLS AMG

At this point, high-end, electrified sports cars are popping up as frequently as Tiger Woods’ mistresses.  Two recently caught my eye.  (Cars, not mistresses…)  The first is the Mercedes Benz SLS AMG.  Now, the SLS isn’t a built-from-scratch EV supercar.  This homage to the classic 300SL comes with a 6.2-liter, 563 hp V8 providing the motivation for sub-4-second acceleration to 60 mph.  But, Daimler’s Chairman of the Board Dieter Zetsche says “As of 2013, it will be available with an electric-only driveline.”  Unfortunately, details are sparse.  But given the gasoline version will probably cost around $200,000, there’s plenty of financial opportunity to install a very capable electron-based drivetrain in a couple years.

The other car that caught my attention is a new car (the Motion) from a new car company (Kepler Motors, presumably named for German mathematician Johannes Kepler, for a reason I don’t know, although I did once visit Tübingen, Germany – the town of Kepler’s alma mater – and had some really good spätzle).  The Motion – a parallel through-the-road hybrid – utilizes Ford‘s new EcoBoost engine (which I described here), tuned to 550 hp and attached to the rear wheels, while a 250 hp electric motor provides motive force at the front end, adding up to new levels of ridiculosity.  It’s good-looking, exclusive, and undoubtedly fast, but I keep thinking:  All these new companies keep showing us what they can do with electrified drivetrains – now, show us what you can do with a $20k – $40k price point.

Single File, Please

December 6th, 2009 Comments off

Volkswagen L1 Concept

Back in September, at the 2009 Frankfurt Auto Show, Volkswagen displayed its L1 Concept vehicle, claiming an astounding fuel economy of 170 mpg.  How did they do it?  Well, they start off with an ultra-efficient hybrid powertrain comprised of a 0.8-liter turbodiesel (TDI, which I discussed here) and a 10kW electric motor.  (No plug needed here!)  They use an ultra-light-weight body of carbon-fiber and plastic.  And they designed it with an incredible drag coefficient (Cd) of 0.195.  Improving on the aero efficiency (a topic I discussed here), is a small frontal area, accomplished by arranging the two occupants of the L1 in tandem.  (Remember, the amount of power needed to overcome the air resistance when moving a vehicle is directly proportional to the frontal area, just as it is to the Cd.)

Nissan Land Glider Concept

Nissan Land Glider Concept

At the Tokyo Motor Show a little over a month ago, Nissan unveiled its Land Glider concept.  Unlike VW’s L1, the Land Glider is a pure electric vehicle, with two motors powering the rear wheels.  (No word on the energy efficiency of the vehicle.)  It also has novel technology, such as the handling-improving capability of leaning in the corners, and crash-avoidance sensors to maneuver the vehicle around objects with which it would otherwise collide.  The Land Glider also (presumably) is aerodynamically efficient – at least it looks that way.  And like the L1, this is achieved partly through the use of tandem seating.

Could this be the shape of things to come? Two-passenger vehicles have existed for a while, from sporty roadsters (like the Miata) to econo-boxes (like the Smart).  So, why not cut the frontal area down, and place the passengers fore and aft?  Is this just too impractical – or too unusual – for the average consumer to handle?  With many pushing for purpose-driven vehicles (rather than cars that can do everything, like what most of us drive today), we may eventually see a lot more variety in the types cars on the market.  It’s not so far-fetched that we may see a derivative of the L1 or Land Glider for sale in a few years.  And although tandem seating doesn’t really lend itself to a romantic time at the drive-in, it certainly can play a part at improving the fuel-economy once the wheels are in motion.